原子是一种非常小的微粒,这是我们都知道的,那原子究竟小到了什么程度呢?我们不妨来简单计算一下,看看1克铜含有多少个铜原子。
真是“不算不知道,一算吓一跳”,原来原子居然这么小,区区1克的铜,就含有数量如此庞大的铜原子。那么问题就来了,像原子这么小的微粒是怎么被观察到的呢?
光学显微镜是利用可见光进行观察的,而可见光的波长大约介于390至780纳米之间(注:1纳米=10^-9米),相对而言,原子的直径数量级则为10^-10米,由于可见光的波长远远大于原子的直径,因此当可见光遇到原子时,就会发生明显的衍射,在我们看来就是一片模糊,根本无法清晰成像。
实际上,即使是紫外线和X射线,也无法满足观察原子的精度,而波长更短的伽马射线,则会因为能量太高而极易破坏原子,并且还极易发生散射,导致无法聚焦,所以也不适合用来观察原子,那怎么办呢?科学家选择了电子。
早在1933年,柏林工业大学压力实验室的恩斯特·鲁斯卡(Ernst Ruska)就成功制造出了世界上第一台电子显微镜(Electron Microscope,简称EM),简单来讲,这种显微镜的工作原理就是,向观察目标发射高能电子束,然后观测电子束与观察目标发生相互作用时产生的各种效应,并将其转化为人眼能够识别的图像。
在经过多年发展之后,电子显微镜已经可以将观察目标放大200万倍以上,其分辨率也能够达到0.2纳米,以这样的水平,观察成片的原子是没有什么问题了,不过科学家还想更进一步,去仔细观察单个的原子,于是就有了后来的扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)。
扫描隧道显微镜由IBM苏黎世研究实验室的格尔德·宾宁(Gerd Binnig)和海因里希·罗雷尔(Heinrich Rohrer)于1981年研制成功(顺便讲一下,在1986年的时候,他们与前文提到的恩斯特·鲁斯卡一起获得了诺贝尔物理学奖)。
扫描隧道显微镜的分辨率可达0.01纳米,观察像铜原子这么小的微粒可以说完全没有问题,但它却有一个缺点,那就是它只适合用来观察导体,对半导体的观测效果就很不理想了,而对绝缘体则根本就不能观测。
为了解决这个问题,格尔德·宾宁又与斯坦福大学的卡尔文·奎特(Calvin Quate)于1985年发明了原子力显微镜(Atomic Force Microscope,简称AFM)。
需要注意的是,尽管原子力显微镜的应用范围比扫描隧道显微镜更广,但由于科技的限制,原子力显微镜的精度目前还达不到扫描隧道显微镜的水平。
原文链接:https://www.toutiao.com/i7054838273520255491
本站文章部分来自于互联网,已注明出处。 未注明原文出处皆为原创文章,转载同样请注明出处并添加链接。
猜你喜欢
发表评论
电子邮件地址不会被公开。 必填项已用*标注